Compare commits

...

2 Commits

Author SHA1 Message Date
90b1d60079 Merge branch 'main' of git.gangary.cn:gary/maze_python 2025-07-03 19:26:47 +08:00
d1548f3281 修改贪心算法2 2025-07-03 19:26:44 +08:00
3 changed files with 414 additions and 608 deletions

34
maze.py
View File

@ -441,15 +441,39 @@ class Maze:
return False return False
try: try:
# 使用tanxin.py中的Greedy3x3ResourceCollector类已添加死胡同检测和回溯功能
from tanxin import Greedy3x3ResourceCollector
# 创建贪心算法实例 # 创建贪心算法实例
algorithm = Greedy3x3Algorithm(self.grid, debug=True) collector = Greedy3x3ResourceCollector(self.grid)
# 运行算法 # 运行算法
result = algorithm.run() result = collector.run_3x3_greedy_collection()
# 将结果转换为路径格式 (y, x) # 将结果转换为路径格式 (y, x)
self.greedy_path = result['path_yx_format'] # 注意tanxin.py中的路径是(x, y)格式而maze.py中使用(y, x)格式
self.greedy_result = result self.greedy_path = [(y, x) for (x, y) in result['path']]
# 转换收集资源格式
resources = []
for resource in result['collected_resources']:
x, y = resource['position']
resources.append({
'position': (x, y), # 保持(x, y)格式以兼容_draw_greedy_path方法
'type': resource['type'],
'value': resource['value']
})
# 更新结果
result_formatted = {
'path_yx_format': self.greedy_path,
'collected_resources': resources,
'total_value': result['total_value'],
'total_moves': result['total_moves'],
'resources_count': result['resources_count']
}
self.greedy_result = result_formatted
self.greedy_step = 0 self.greedy_step = 0
self.is_greedy_path_complete = False self.is_greedy_path_complete = False
@ -463,6 +487,8 @@ class Maze:
except Exception as e: except Exception as e:
print(f"贪心搜索失败: {e}") print(f"贪心搜索失败: {e}")
import traceback
traceback.print_exc()
return False return False
def next_greedy_step(self): def next_greedy_step(self):

View File

@ -1,337 +0,0 @@
import copy
from collections import deque
class Strict3x3GreedyCollector:
"""
严格的3x3视野贪心资源收集器
每次移动时只考虑3x3视野范围内的资源
如果视野内没有资源则随机移动探索
"""
def __init__(self, maze, start_pos=None, end_pos=None):
"""初始化收集器"""
self.original_maze = copy.deepcopy(maze)
self.maze = copy.deepcopy(maze)
self.rows = len(maze)
self.cols = len(maze[0]) if self.rows > 0 else 0
# 寻找起始位置和目标位置
self.start_pos = start_pos or self._find_position('s')
self.end_pos = end_pos or self._find_position('e')
if not self.start_pos:
raise ValueError("无法找到起始位置 's'")
if not self.end_pos:
raise ValueError("无法找到目标位置 'e'")
self.current_pos = self.start_pos
self.path = [self.start_pos]
self.collected_resources = []
self.total_value = 0
self.visited_resources = set()
self.explored_positions = set([self.start_pos])
print(f"严格3x3视野模式")
print(f"起始位置: {self.start_pos}")
print(f"目标位置: {self.end_pos}")
def _find_position(self, target):
"""寻找地图中指定字符的位置"""
for i in range(self.rows):
for j in range(self.cols):
if self.maze[i][j].lower() == target.lower():
return (i, j)
return None
def get_3x3_vision(self, pos):
"""获取以pos为中心的3x3视野范围内的所有单元格"""
row, col = pos
vision = {}
# 遍历3x3范围
for dr in range(-1, 2):
for dc in range(-1, 2):
new_row, new_col = row + dr, col + dc
# 检查边界
if 0 <= new_row < self.rows and 0 <= new_col < self.cols:
vision[(new_row, new_col)] = self.maze[new_row][new_col]
return vision
def get_adjacent_cells(self, pos):
"""获取当前位置的上下左右四个相邻位置"""
row, col = pos
adjacent = []
# 上下左右四个方向
directions = [(-1, 0), (1, 0), (0, -1), (0, 1)]
for dr, dc in directions:
new_row, new_col = row + dr, col + dc
# 检查边界和可移动性
if (0 <= new_row < self.rows and
0 <= new_col < self.cols and
self.can_move_to((new_row, new_col))):
adjacent.append((new_row, new_col))
return adjacent
def can_move_to(self, pos):
"""检查是否可以移动到指定位置"""
row, col = pos
cell = self.maze[row][col]
# 不能移动到墙壁
return cell != '1'
def evaluate_resource_value(self, cell):
"""评估资源的价值"""
if cell.startswith('g'):
try:
return int(cell[1:])
except ValueError:
return 0
elif cell.startswith('t'):
try:
return -int(cell[1:])
except ValueError:
return 0
else:
return 0
def find_best_resource_in_3x3_vision(self):
"""
严格在3x3视野范围内找到价值最高的资源
Returns:
tuple: (最佳资源位置, 资源价值) (None, 0)
"""
vision = self.get_3x3_vision(self.current_pos)
best_pos = None
best_value = float('-inf')
for pos, cell in vision.items():
# 跳过已访问的资源
if pos in self.visited_resources:
continue
# 跳过当前位置
if pos == self.current_pos:
continue
# 跳过不可移动的位置
if not self.can_move_to(pos):
continue
# 检查是否可以直接到达(相邻位置)
if pos not in self.get_adjacent_cells(self.current_pos):
continue
# 检查是否为资源
value = self.evaluate_resource_value(cell)
if value != 0 and value > best_value:
best_value = value
best_pos = pos
return best_pos, best_value if best_pos else 0
def find_exploration_target(self):
"""
当视野内没有资源时寻找探索目标
优先选择未探索过的位置
"""
adjacent = self.get_adjacent_cells(self.current_pos)
# 优先选择未探索的位置
unexplored = [pos for pos in adjacent if pos not in self.explored_positions]
if unexplored:
return unexplored[0] # 选择第一个未探索的位置
# 如果所有相邻位置都探索过,选择任意一个
if adjacent:
return adjacent[0]
return None
def collect_resource(self, pos):
"""收集指定位置的资源"""
row, col = pos
cell = self.maze[row][col]
value = self.evaluate_resource_value(cell)
if value != 0:
self.collected_resources.append({
'position': pos,
'type': cell,
'value': value
})
self.total_value += value
self.visited_resources.add(pos)
print(f"收集资源: 位置{pos}, 类型{cell}, 价值{value}, 总价值{self.total_value}")
def run_strict_3x3_collection(self, max_moves=1000):
"""
运行严格3x3视野贪心资源收集算法
Args:
max_moves: 最大移动步数防止无限循环
Returns:
dict: 包含路径收集的资源等信息
"""
print("\\n开始严格3x3视野贪心资源收集...")
moves = 0
stuck_count = 0 # 连续无法找到资源的次数
max_stuck = 20 # 最大连续无资源次数
while moves < max_moves and stuck_count < max_stuck:
moves += 1
# 在3x3视野内寻找最佳资源
best_resource_pos, best_value = self.find_best_resource_in_3x3_vision()
if best_resource_pos is not None:
print(f"{moves}步: 发现视野内资源 位置{best_resource_pos}, 价值{best_value}")
# 移动到资源位置并收集
self.current_pos = best_resource_pos
self.path.append(best_resource_pos)
self.explored_positions.add(best_resource_pos)
self.collect_resource(best_resource_pos)
stuck_count = 0 # 重置无资源计数
else:
# 视野内没有资源,进行探索性移动
exploration_target = self.find_exploration_target()
if exploration_target:
print(f"{moves}步: 视野内无资源,探索移动到 {exploration_target}")
self.current_pos = exploration_target
self.path.append(exploration_target)
self.explored_positions.add(exploration_target)
stuck_count += 1
else:
print(f"{moves}步: 无法进行任何移动,结束收集")
break
if moves >= max_moves:
print(f"达到最大移动步数 {max_moves},结束收集")
elif stuck_count >= max_stuck:
print(f"连续 {max_stuck} 步未找到资源,结束收集")
print("严格3x3视野资源收集完成")
return self.get_collection_result()
def get_collection_result(self):
"""获取收集结果"""
return {
'path': self.path.copy(),
'collected_resources': self.collected_resources.copy(),
'total_value': self.total_value,
'total_moves': len(self.path) - 1,
'resources_count': len(self.collected_resources),
'start_pos': self.start_pos,
'end_pos': self.end_pos,
'final_pos': self.current_pos,
'explored_positions': len(self.explored_positions)
}
def print_result_summary(self):
"""打印收集结果摘要"""
result = self.get_collection_result()
print("\\n=== 严格3x3视野贪心收集结果摘要 ===")
print(f"起始位置: {result['start_pos']}")
print(f"最终位置: {result['final_pos']}")
print(f"总移动步数: {result['total_moves']}")
print(f"探索位置数: {result['explored_positions']}")
print(f"收集资源数量: {result['resources_count']}")
print(f"资源总价值: {result['total_value']}")
print("\\n收集的资源详情:")
for i, resource in enumerate(result['collected_resources'], 1):
print(f" {i}. 位置{resource['position']}: {resource['type']} (价值: {resource['value']})")
# 显示路径的关键点
path_points = result['path']
if len(path_points) <= 10:
path_str = ' -> '.join(map(str, path_points))
else:
path_str = f"{path_points[0]} -> ... -> {path_points[-1]} (共{len(path_points)}个位置)"
print(f"\\n移动路径: {path_str}")
def visualize_path_on_maze(self):
"""在迷宫上可视化移动路径"""
visual_maze = copy.deepcopy(self.original_maze)
# 标记路径
for i, pos in enumerate(self.path):
row, col = pos
if pos == self.start_pos:
visual_maze[row][col] = 'S' # 起点
elif pos in [r['position'] for r in self.collected_resources]:
# 已收集的资源位置
visual_maze[row][col] = '*'
elif i == len(self.path) - 1:
# 最终位置
visual_maze[row][col] = 'F'
else:
# 路径点
visual_maze[row][col] = '.'
return visual_maze
def print_visual_maze(self):
"""打印可视化的迷宫"""
visual_maze = self.visualize_path_on_maze()
print("\\n=== 严格3x3视野路径可视化迷宫 ===")
print("S: 起点, F: 终点, *: 已收集资源, .: 路径")
for row in visual_maze:
print(' '.join(f"{cell:>2}" for cell in row))
def compare_algorithms():
"""比较不同算法的效果"""
# 创建一个更大的示例迷宫
demo_maze = [
['s', '0', 'g5', '1', 't3', '0', 'g8'],
['0', '1', '0', '0', 'g2', '1', '0'],
['g3', '0', '1', 't2', '0', '0', 'g6'],
['0', 't1', '0', '0', 'g4', '1', '0'],
['1', '0', 'g1', '0', '0', '0', 't5'],
['0', 'g7', '0', '1', '0', 'g9', '0'],
['t4', '0', '0', '0', '1', '0', 'e']
]
print("=== 算法比较演示 ===")
print("迷宫说明:")
print(" s: 起点, e: 终点")
print(" g数字: 金币资源 (正收益)")
print(" t数字: 陷阱资源 (负收益)")
print(" 0: 可通行路径, 1: 墙壁")
print("\\n原始迷宫:")
for row in demo_maze:
print(' '.join(f"{cell:>2}" for cell in row))
print("\\n" + "="*60)
print("严格3x3视野贪心算法:")
print("="*60)
# 运行严格3x3视野算法
strict_collector = Strict3x3GreedyCollector(demo_maze)
strict_result = strict_collector.run_strict_3x3_collection()
strict_collector.print_result_summary()
strict_collector.print_visual_maze()
return strict_collector, strict_result
if __name__ == "__main__":
# 运行比较演示
strict_collector, strict_result = compare_algorithms()

651
tanxin.py
View File

@ -5,173 +5,6 @@ import copy
from collections import deque from collections import deque
class GreedyPlayer:
def __init__(self, map_data, start=None, end=None):
"""初始化GreedyPlayer对象"""
self.map_data = map_data
self.rows = len(map_data)
self.cols = len(map_data[0]) if self.rows > 0 else 0
self.start = start
self.end = end
self.path = []
self.total_reward = 0
self.visited = set()
self.marked_map = []
# 如果未指定起点和终点,自动查找
if not self.start or not self.end:
self._find_start_end()
def _find_start_end(self):
"""自动查找地图中的起点(s)和终点(e)"""
for y in range(self.rows):
for x in range(self.cols):
if self.map_data[y][x] == 's' or self.map_data[y][x] == 'S':
self.start = (x, y)
elif self.map_data[y][x] == 'e' or self.map_data[y][x] == 'E':
self.end = (x, y)
print(f"起点: {self.start}, 终点: {self.end}")
def get_visible_cells(self, x, y, visibility=1):
"""获取以(x,y)为中心的上下左右四个方向的单元格信息"""
visible = {}
# 只考虑上下左右四个方向dx或dy为±1另一个为0
directions = [(-1, 0), (1, 0), (0, -1), (0, 1)]
for dx, dy in directions:
nx, ny = x + dx, y + dy
if 0 <= nx < self.cols and 0 <= ny < self.rows:
cell = self.map_data[ny][nx]
distance = 1 # 上下左右移动距离为1
visible[(nx, ny)] = (cell, distance)
return visible
def evaluate_cell(self, cell, distance):
"""评估单元格的价值,返回奖励/路径的比值"""
if cell == 's' or cell == 'e':
return 0 # 起点和终点不参与资源评估
if cell.startswith('t'):
try:
value = -int(cell[1:]) # t表示损失转为负值
return value / distance
except ValueError:
return 0
elif cell.startswith('g'):
try:
value = int(cell[1:]) # g表示收益转为正值
return value / distance
except ValueError:
return 0
return 0 # 0、l、b等不产生资源价值
def find_path(self):
"""基于贪心策略的路径规划(只能上下左右移动)"""
if not self.start or not self.end:
raise ValueError("地图中未找到起点或终点")
current = self.start
self.path = [current]
self.visited = {current}
self.total_reward = 0
while current != self.end:
x, y = current
visible = self.get_visible_cells(x, y)
best_cell = None
best_value = -float('inf')
for (nx, ny), (cell, distance) in visible.items():
# 跳过已访问的位置
if (nx, ny) in self.visited:
continue
# 只允许在0、t、g、l、b上行走
if cell not in ['0'] and not cell.startswith(('t', 'g', 'l', 'b')):
continue
# 评估单元格价值
value = self.evaluate_cell(cell, distance)
# 终点具有最高优先级
if cell == 'e':
value = float('inf')
# 选择贪心值最大的单元格
if value > best_value:
best_value = value
best_cell = (nx, ny)
# 无法找到可行路径
if best_cell is None:
print("无法找到通往终点的路径!")
break
# 更新当前位置和路径
current = best_cell
self.path.append(current)
self.visited.add(current)
# 更新总收益(跳过起点和终点)
if len(self.path) > 1 and len(self.path) < len(self.path) + 1:
cell = self.map_data[current[1]][current[0]]
if cell.startswith('t'):
self.total_reward -= int(cell[1:])
elif cell.startswith('g'):
self.total_reward += int(cell[1:])
self.add_path_to_map()
return self.path
def add_path_to_map(self):
"""在地图上标记路径,上下移动用|,左右移动用-"""
if not self.path:
print("没有路径可标记")
return
# 创建地图副本,避免修改原始地图
marked_map = [row.copy() for row in self.map_data]
# 标记路径点
for i, (x, y) in enumerate(self.path):
if marked_map[y][x] == 's':
marked_map[y][x] = 'S' # 标记起点
elif marked_map[y][x] == 'e':
marked_map[y][x] = 'E' # 标记终点
else:
marked_map[y][x] = '*' # 标记路径点
# 标记路径线(上下左右)
for i in range(len(self.path) - 1):
x1, y1 = self.path[i]
x2, y2 = self.path[i + 1]
# 左右移动
if x1 != x2 and y1 == y2:
start, end = (x1, x2) if x1 < x2 else (x2, x1)
for x in range(start, end + 1):
if marked_map[y1][x] not in ['S', 'E']:
marked_map[y1][x] = '-'
# 上下移动
elif y1 != y2 and x1 == x2:
start, end = (y1, y2) if y1 < y2 else (y2, y1)
for y in range(start, end + 1):
if marked_map[y][x1] not in ['S', 'E']:
marked_map[y][x1] = '|'
# 保存标记后的地图
self.marked_map = marked_map
return marked_map
def get_path(self):
"""返回找到的路径"""
return self.path
def get_total_reward(self):
"""返回总收益"""
return self.total_reward
class Greedy3x3ResourceCollector: class Greedy3x3ResourceCollector:
""" """
@ -209,6 +42,13 @@ class Greedy3x3ResourceCollector:
self.total_value = 0 self.total_value = 0
self.visited_resources = set() self.visited_resources = set()
self.explored_positions = set([self.start]) self.explored_positions = set([self.start])
# 增加历史移动记录和死胡同检测相关变量
self.position_visit_count = {self.start: 1} # 记录每个位置的访问次数
self.deadend_positions = set() # 记录已知的死胡同位置
self.backtrack_points = [] # 记录可能的回溯点
self.oscillation_detection = [] # 用于检测来回走动的历史
self.max_oscillation_length = 6 # 检测来回走动的最大长度
print(f"3x3视野贪心算法初始化") print(f"3x3视野贪心算法初始化")
print(f"起始位置: {self.start}") print(f"起始位置: {self.start}")
@ -320,73 +160,171 @@ class Greedy3x3ResourceCollector:
def find_best_resource_in_3x3_vision(self): def find_best_resource_in_3x3_vision(self):
""" """
在3x3视野范围内找到价值最高的可到达资源 在3x3视野内寻找最佳资源
优先级金币 > 未走过 > 走过的路(优先很久之前走过的路) > /陷阱
Returns: 加入死胡同检测和回溯机制
tuple: (最佳资源位置, 资源价值) (None, 0)
""" """
vision = self.get_3x3_vision(self.current_pos) x, y = self.current_pos
best_pos = None best_pos = None
best_value = float('-inf') best_value = float('-inf')
best_visited_time = float('inf')
# 首先尝试找正价值资源
for pos, cell in vision.items(): # 更新当前位置的访问次数
# 跳过已访问的资源 self.position_visit_count[self.current_pos] = self.position_visit_count.get(self.current_pos, 0) + 1
if pos in self.visited_resources:
continue # 检查是否处于死胡同中
if self.is_deadend(self.current_pos):
# 跳过当前位置 self.deadend_positions.add(self.current_pos)
if pos == self.current_pos: # 寻找回溯点
continue backtrack_point = self.find_backtrack_point()
if backtrack_point != self.current_pos:
# 跳过不可移动的位置 # 将当前位置到回溯点的路径添加到路径计划中
if not self.can_move_to(pos): self.backtrack_points.append(backtrack_point)
continue print(f"检测到死胡同,计划回溯到: {backtrack_point}")
# 如果回溯点是相邻的,直接返回
# 检查是否可以直接到达(相邻位置) if abs(backtrack_point[0] - x) + abs(backtrack_point[1] - y) == 1:
if pos not in self.get_adjacent_cells(self.current_pos): return backtrack_point, 0 # 回溯点价值为0
continue
# 如果有待回溯的点,优先选择那个方向
# 检查是否为资源 if self.backtrack_points:
value = self.evaluate_resource_value(cell) target = self.backtrack_points[-1]
if value > 0 and value > best_value: # 优先选择正价值资源 # 计算到回溯点的方向
best_value = value for dx, dy in [(0, 1), (1, 0), (0, -1), (-1, 0)]:
best_pos = pos nx, ny = x + dx, y + dy
if (nx, ny) == target:
# 如果没有正价值资源,考虑负价值资源(选择损失最小的) return (nx, ny), 0 # 回溯点价值为0
# 如果相邻点在路径上且朝向回溯点方向,也可以选择
if (0 <= nx < self.cols and 0 <= ny < self.rows and
self.map_data[ny][nx] != '1'): # 使用'1'表示墙壁
if ((nx > x and target[0] > x) or
(nx < x and target[0] < x) or
(ny > y and target[1] > y) or
(ny < y and target[1] < y)):
return (nx, ny), 0 # 朝向回溯点的方向价值为0
# 如果已经到达回溯点或无法向回溯点移动,弹出这个回溯点
if self.current_pos == self.backtrack_points[-1]:
self.backtrack_points.pop()
# 检测是否陷入来回走动的循环
if len(self.path) >= 2:
self.oscillation_detection.append(self.current_pos)
if len(self.oscillation_detection) > self.max_oscillation_length:
self.oscillation_detection.pop(0)
if self.detect_oscillation():
print("检测到来回走动,尝试打破循环")
# 清空回溯点列表,寻找新的探索方向
self.backtrack_points = []
# 尝试找到访问次数最少的相邻位置
min_visits = float('inf')
least_visited = None
for dx, dy in [(0, 1), (1, 0), (0, -1), (-1, 0)]:
nx, ny = x + dx, y + dy
if (0 <= nx < self.cols and 0 <= ny < self.rows and
self.map_data[ny][nx] != '1'): # 使用'1'表示墙壁
visits = self.position_visit_count.get((nx, ny), 0)
if visits < min_visits:
min_visits = visits
least_visited = (nx, ny)
if least_visited:
return least_visited, 0 # 访问次数最少的位置价值为0
# 在3x3视野内寻找最佳位置
for i in range(-1, 2):
for j in range(-1, 2):
# 跳过自身和对角线位置
if (i == 0 and j == 0) or (i != 0 and j != 0):
continue
nx, ny = x + i, y + j
# 检查位置是否在地图范围内
if 0 <= nx < self.cols and 0 <= ny < self.rows:
cell = self.map_data[ny][nx]
pos = (nx, ny)
# 检查是否是墙,不能走
if cell == '1':
continue
# 计算资源价值
value = self.evaluate_resource_value(cell)
# 检查是否已经走过这个位置
is_visited = pos in self.explored_positions
visited_time = self.position_visit_count.get(pos, 0)
# 计算探索潜力
exploration_potential = self.calculate_exploration_potential(pos)
# 优先级计算逻辑
# 1. 金币优先
if value > 0:
if (value > best_value or
(value == best_value and
((not is_visited and best_visited_time > 0) or
(is_visited and visited_time < best_visited_time)))):
best_value = value
best_pos = pos
best_visited_time = visited_time if is_visited else 0
# 2. 没有金币,选择未走过的路
elif not is_visited:
if best_value <= 0 and (best_visited_time > 0 or exploration_potential > best_value):
best_value = exploration_potential
best_pos = pos
best_visited_time = 0
# 3. 如果都走过了,选择走过次数最少的路
elif is_visited and visited_time < best_visited_time:
if best_value <= 0:
best_value = -visited_time # 负值,访问次数越少越好
best_pos = pos
best_visited_time = visited_time
# 如果找不到合适的位置,就选择任意一个可行的相邻位置
if best_pos is None: if best_pos is None:
for pos, cell in vision.items(): for dx, dy in [(0, 1), (1, 0), (0, -1), (-1, 0)]:
if pos in self.visited_resources or pos == self.current_pos: nx, ny = x + dx, y + dy
continue if (0 <= nx < self.cols and 0 <= ny < self.rows and
if not self.can_move_to(pos): self.map_data[ny][nx] != '1'): # 使用'1'表示墙壁
continue best_pos = (nx, ny)
if pos not in self.get_adjacent_cells(self.current_pos): break
continue
return best_pos, best_value if best_value > float('-inf') else 0
value = self.evaluate_resource_value(cell)
if value < 0 and value > best_value: # 选择损失最小的陷阱
best_value = value
best_pos = pos
return best_pos, best_value if best_pos else 0
def find_exploration_target(self): def find_exploration_target(self):
""" """
当视野内没有资源时寻找探索目标 当视野内没有资源时寻找探索目标
优先选择未探索过的位置 严格按照优先级未走过的路 > 走过的路很久之前走过的优先
""" """
adjacent = self.get_adjacent_cells(self.current_pos) adjacent = self.get_adjacent_cells(self.current_pos)
# 优先选择未探索的位置 # 1. 优先级1未走过的路
unexplored = [pos for pos in adjacent if pos not in self.explored_positions] unexplored = [pos for pos in adjacent if pos not in self.explored_positions]
if unexplored: if unexplored:
return unexplored[0] # 选择第一个未探索的位置 return unexplored[0] # 选择第一个未探索的位置
# 如果所有相邻位置都探索过,选择任意一个 # 2. 优先级2走过的路按时间排序很久之前走过的优先
if adjacent: explored = []
return adjacent[0] for pos in adjacent:
if pos in self.explored_positions:
# 找出这个位置在路径中最早出现的索引
if pos in self.path:
earliest_index = self.path.index(pos)
explored.append((pos, earliest_index))
else:
# 如果在explored_positions但不在path中可能是通过其他方式标记的
# 给它一个很大的索引,表示是最近才探索的
explored.append((pos, float('inf')))
if explored:
# 按照索引排序,索引越小表示越早走过
explored.sort(key=lambda x: x[1])
return explored[0][0]
return None return None
def collect_resource(self, pos): def collect_resource(self, pos):
@ -414,6 +352,8 @@ class Greedy3x3ResourceCollector:
def run_3x3_greedy_collection(self, max_moves=1000): def run_3x3_greedy_collection(self, max_moves=1000):
""" """
运行3x3视野贪心资源收集算法 运行3x3视野贪心资源收集算法
严格按照优先级金币 > 未走过的路 > 走过的路 > /陷阱
对于走过的路优先走很久之前走过的路
Args: Args:
max_moves: 最大移动步数防止无限循环 max_moves: 最大移动步数防止无限循环
@ -430,32 +370,36 @@ class Greedy3x3ResourceCollector:
while moves < max_moves and stuck_count < max_stuck: while moves < max_moves and stuck_count < max_stuck:
moves += 1 moves += 1
# 在3x3视野内寻找最佳资源 # 在3x3视野内寻找最佳位置(按照严格优先级)
best_resource_pos, best_value = self.find_best_resource_in_3x3_vision() best_pos, best_value = self.find_best_resource_in_3x3_vision()
if best_resource_pos is not None: if best_pos is not None:
print(f"{moves}步: 发现视野内资源 位置{best_resource_pos}, 价值{best_value}") # 移动到选定位置
self.current_pos = best_pos
# 移动到资源位置并收集 self.path.append(best_pos)
self.current_pos = best_resource_pos self.explored_positions.add(best_pos)
self.path.append(best_resource_pos)
self.explored_positions.add(best_resource_pos) # 如果是资源位置,进行收集
self.collect_resource(best_resource_pos) if best_value != 0:
print(f"{moves}步: 发现视野内金币 位置{best_pos}, 价值{best_value}")
stuck_count = 0 # 重置无资源计数 self.collect_resource(best_pos)
else: stuck_count = 0 # 收集到资源后重置无资源计数
# 视野内没有资源,进行探索性移动
exploration_target = self.find_exploration_target()
if exploration_target:
print(f"{moves}步: 视野内无资源,探索移动到 {exploration_target}")
self.current_pos = exploration_target
self.path.append(exploration_target)
self.explored_positions.add(exploration_target)
stuck_count += 1
else: else:
print(f"{moves}步: 无法进行任何移动,结束收集") # 是普通路径
break if best_pos not in self.explored_positions:
print(f"{moves}步: 移动到未走过的路 位置{best_pos}")
else:
print(f"{moves}步: 移动到走过的路 位置{best_pos}")
stuck_count += 1
else:
# 没有可移动位置,结束收集
print(f"{moves}步: 无法进行任何移动,结束收集")
break
# 检查是否达到终点
if self.current_pos == self.end:
print(f"{moves}步: 到达终点!")
break
if moves >= max_moves: if moves >= max_moves:
print(f"达到最大移动步数 {max_moves},结束收集") print(f"达到最大移动步数 {max_moves},结束收集")
@ -463,6 +407,7 @@ class Greedy3x3ResourceCollector:
print(f"连续 {max_stuck} 步未找到资源,结束收集") print(f"连续 {max_stuck} 步未找到资源,结束收集")
print("3x3视野资源收集完成") print("3x3视野资源收集完成")
print(f"总步数: {len(self.path)-1}, 收集资源数: {len(self.collected_resources)}, 资源总价值: {self.total_value}")
return self.get_collection_result() return self.get_collection_result()
def get_collection_result(self): def get_collection_result(self):
@ -479,32 +424,204 @@ class Greedy3x3ResourceCollector:
'explored_positions': len(self.explored_positions) 'explored_positions': len(self.explored_positions)
} }
def reset(self):
"""重置收集器状态"""
self.map_data = copy.deepcopy(self.original_map)
self.current_pos = self.start
self.path = [self.start]
self.collected_resources = []
self.total_value = 0
self.visited_resources = set()
self.explored_positions = set([self.start])
self.position_visit_count = {self.start: 1}
self.deadend_positions = set()
self.backtrack_points = []
self.oscillation_detection = []
def get_path(self): def get_path(self):
"""返回路径,转换为(y, x)格式以兼容现有代码""" """
# 将(x, y)格式的路径转换为(y, x)格式 获取完整的资源收集路径
return [(y, x) for (x, y) in self.path] 返回路径列表格式为 [(x1, y1), (x2, y2), ...]
"""
# 先重置状态
self.reset()
max_steps = self.rows * self.cols * 3 # 设置最大步数限制,避免无限循环
steps = 0
reached_goal = False
while steps < max_steps and not reached_goal:
_, _, reached_goal = self.next_step()
steps += 1
# 如果路径长度已经很长但还没到达目标,可能是在循环
if steps > self.rows * self.cols * 2:
print(f"警告:路径过长 ({steps} 步),可能存在循环。提前结束。")
break
if reached_goal:
print(f"找到路径!总步数: {steps}, 总收集价值: {self.total_value}")
else:
print(f"未能找到到达目标的路径,已走 {steps} 步,总收集价值: {self.total_value}")
print(f"发现的死胡同数量: {len(self.deadend_positions)}")
return self.path
def get_total_reward(self): def next_step(self):
"""返回总收益""" """
return self.total_value 执行下一步移动
返回(新位置, 收集的资源价值, 是否到达目标)
"""
if self.current_pos == self.end:
return self.current_pos, 0, True
next_pos, value = self.find_best_resource_in_3x3_vision()
if next_pos is None:
# 如果找不到下一步,说明卡住了,可能是迷宫设计问题
print("找不到下一步移动,可能被卡住了")
return self.current_pos, 0, False
# 记录新位置和路径
self.current_pos = next_pos
self.path.append(next_pos)
self.explored_positions.add(next_pos)
# 更新位置访问计数
self.position_visit_count[next_pos] = self.position_visit_count.get(next_pos, 0) + 1
# 如果当前位置是回溯点且有多个回溯点,移除当前回溯点
if self.backtrack_points and next_pos == self.backtrack_points[-1]:
self.backtrack_points.pop()
# 收集资源
x, y = next_pos
cell = self.map_data[y][x]
value = self.evaluate_resource_value(cell)
if value > 0 and next_pos not in self.visited_resources:
self.collected_resources.append((next_pos, value))
self.visited_resources.add(next_pos)
self.total_value += value
# 标记资源已被收集,避免重复计算
if cell.startswith('g') or cell.startswith('c'):
try:
self.map_data[y][x] = 'v' # 将收集过的资源标记为已访问
except:
pass
# 检查是否到达目标
reached_goal = (next_pos == self.end)
# 调试信息
if len(self.path) % 10 == 0:
print(f"当前路径长度: {len(self.path)}, 总收集价值: {self.total_value}")
print(f"已发现的死胡同数量: {len(self.deadend_positions)}")
return next_pos, value, reached_goal
def add_path_to_map(self): def is_deadend(self, pos):
"""在地图上标记路径""" """
marked_map = [row.copy() for row in self.map_data] 判断当前位置是否是死胡同
死胡同的定义除了来路外周围全是墙/陷阱/已走过的路
# 标记路径点 """
for i, (x, y) in enumerate(self.path): x, y = pos
if marked_map[y][x] == 's': valid_directions = 0
marked_map[y][x] = 'S' # 标记起点
elif marked_map[y][x] == 'e': for dx, dy in [(0, 1), (1, 0), (0, -1), (-1, 0)]:
marked_map[y][x] = 'E' # 标记终点 nx, ny = x + dx, y + dy
elif (x, y) in [r['position'] for r in self.collected_resources]: if (0 <= nx < self.cols and 0 <= ny < self.rows and
marked_map[y][x] = '*' # 标记已收集资源 self.map_data[ny][nx] != '1' and # 使用'1'表示墙壁
(nx, ny) not in self.explored_positions):
valid_directions += 1
# 如果没有未探索的方向,则是死胡同
return valid_directions == 0
def find_backtrack_point(self):
"""
寻找回溯点即从路径中找到最近的有未探索方向的点
"""
# 从最近访问到最早访问的路径点遍历
for pos in reversed(self.path):
x, y = pos
# 检查这个点的四个方向是否有未探索的路
for dx, dy in [(0, 1), (1, 0), (0, -1), (-1, 0)]:
nx, ny = x + dx, y + dy
if (0 <= nx < self.cols and 0 <= ny < self.rows and
self.map_data[ny][nx] != '1' and # 使用'1'表示墙壁
(nx, ny) not in self.explored_positions):
return pos
# 如果找不到回溯点,则返回起始点
return self.start
def detect_oscillation(self):
"""
检测路径中是否有来回走动的情况
"""
if len(self.oscillation_detection) < self.max_oscillation_length:
return False
# 检查最近的移动是否形成循环
recent_moves = self.oscillation_detection[-self.max_oscillation_length:]
# 打印调试信息
print(f"检查振荡: {recent_moves[-6:]}")
# 检查是否有重复位置模式 (例如A-B-A-B或A-B-C-A-B-C)
for pattern_length in range(2, self.max_oscillation_length // 2 + 1):
if recent_moves[-pattern_length:] == recent_moves[-2*pattern_length:-pattern_length]:
print(f"检测到振荡!模式长度: {pattern_length}")
return True
# 更简单的检测:检查是否在有限步数内多次访问同一位置
position_counts = {}
for pos in recent_moves:
if pos in position_counts:
position_counts[pos] += 1
if position_counts[pos] >= 3: # 在短时间内访问同一位置3次以上
print(f"检测到位置 {pos} 被频繁访问 {position_counts[pos]}")
return True
else: else:
marked_map[y][x] = '.' # 标记路径点 position_counts[pos] = 1
self.marked_map = marked_map return False
return marked_map
def calculate_exploration_potential(self, pos):
"""
计算位置的探索潜力值
潜力值基于
1. 周围未探索的方向数
2. 到达过这个位置的次数次数越多潜力越低
3. 是否含有资源
"""
x, y = pos
potential = 0
# 检查周围四个方向是否有未探索的路
for dx, dy in [(0, 1), (1, 0), (0, -1), (-1, 0)]:
nx, ny = x + dx, y + dy
if (0 <= nx < self.cols and 0 <= ny < self.rows):
# 未探索的路增加潜力
if (nx, ny) not in self.explored_positions and self.map_data[ny][nx] != '1':
potential += 10
# 有资源的路增加更多潜力
cell = self.map_data[ny][nx]
if cell.startswith('g'):
try:
value = int(cell[1:])
potential += value * 2
except ValueError:
potential += 5 # 如果无法解析值则默认增加5点潜力
# 访问次数越多,潜力越低
visit_penalty = self.position_visit_count.get(pos, 0) * 5
potential = max(0, potential - visit_penalty)
return potential
# 使用示例 # 使用示例